
PROGRAMME DE FORMATION
Document généré le 27/01/2026

TDD, DDD et Clean Architecture dans le monde Python

Type d'action : Action de formation Durée totale : 14h

Informations de session

Lieu : Visio par Zoom

Formateur : Michaël AZERHAD

Dates et horaires

Date Début Fin Durée

09/02/2026 09:15 12:15 3h

09/02/2026 13:00 17:00 4h

10/02/2026 09:15 12:15 3h

10/02/2026 13:00 17:00 4h



Objectifs de la formation

Sensibilisation à la discipline TDD et à la Clean Architecture dans le monde Python afin de

prévenir la complexité accidentelle, y compris l’introduction aux notions principales du DDD

(Domain-Driven Design) et de CQRS.

Montée en compétences au TDD et à la Clean Architecture dans le monde Python à travers

un live coding très professionnel et approfondi, à vocation de démonstration et de mises en

situation pour les exercices.

Il s’agira de réaliser from scratch une application digne de ce qu’on attend en entreprise.

Compréhension et démonstration des différents types de tests (unitaire / acceptation / end-

to-end / intégration).

Clarification de chacun des concepts maîtres et annexes à travers des séances de

questions-réponses et autres démonstrations concrètes.



Description

Les backends comme les frontends souffrent d’une complexité accidentelle dans la plupart des

projets. Une complexité accidentelle est une complexité additionnelle malvenue qui aurait pu être

évitée. Quand s’observe-t-elle réellement ? Quelques mois après le début du projet. Pourquoi

donc le terme “accidentelle” et non le terme “additionnelle” ? Car bien souvent, elle survient par

surprise, sans anticipation aucune. Surtout lorsque le développeur n’est pas aguerri sur les

concepts théoriques relatifs à la conception logicielle. Quelles en sont ses conséquences :

Un temps de développement considérablement augmenté pour la moindre fonctionnalité

normalement simple.

Une peur extrême de changer le code existant, de peur d’y engendrer des impacts non

perçus ni maîtrisés.

Par cette peur de changer/casser, chaque bug remonté est corrigé avec des

contournements (workarounds) ; autrement dit des « pansements » indirects proches de la

supercherie.

Une expressivité du code réduite à néant, par à-coups de ces contournements et du stress

engendré par la soumission face au code existant.

Un code qui devient de moins en moins testable, par des raccourcis contraires aux bonnes

pratiques d’architecture et de conception logicielle, souvent passés inaperçus, sans prise de

conscience.

Des sessions fatigantes de débogage à outrance devant ce code jugé farfelu, non expressif

et souvent bancal.

Une application devenue très rapidement inflexible, dont même la moindre évolution

technologique, telle une mise à jour de frameworks, devient le signe d’un besoin de refonte

globale …

Est-ce une fatalité ? Devant le nombre de projets dans ce cas-là, il faut croire que oui. Mais il existe

heureusement des pratiques logicielles qui redonnent de l’espoir et qui atténuent drastiquement

cette complexité accidentelle, si bien comprises et bien menées. Parmi ces pratiques, je mettrai

l’accent sur deux d’entre-elles qui me paraissent totalement cruciales et qui ont changé mon

quotidien dès 2011 :

Le Test-Driven Development (TDD)

La Clean Architecture (cf. Architecture Hexagonale ou Ports/Adapters).

Dans cette formation, je vous démontrerai comment réaliser un backend from scratch avec ces

pratiques dans un live coding avancé et fluide, sans manquer de vous exposer une bonne

stratégie de tests combinant tests d’acceptation, tests unitaires, tests d’intégration et tests end-

to-end. Mon premier souhait : que vous compreniez bien que le TDD n’est pas une technique de

test mais de codage permettant une amélioration notable de vos algorithmes et de vos designs.

Le sujet sera un projet Python avec FastAPI, bien plus proche de ce qu’on attend de nous en

entreprise qu’un simple kata de tri de nombres. Technologies :

Python

FastAPI (REST APIs)

SQLAlchemy (ORM)

PostgreSQL

Pytest (tests unitaires, intégration)

TestContainers (Docker pour tests)

Ce sera interactif avec des exercices sur le chemin, des échanges de questions/réponses au tac au

tac, et surtout une bonne ambiance, à la fois professionnelle et détendue. Ayant l’habitude

d’enseigner sur les sujets Craft, j’ai acquis une pédagogie qui vous plaira et qui ne laissera

personne sur le carreau. Aussi, j’assurerai un suivi sous forme de réponses à vos nouvelles



questions post-formation de sorte à ce que chacun d’entre vous évolue et progresse sans blocage

et dans la bonne direction au quotidien. Pour finir, vous constaterez pour beaucoup que

quasiment tout ce que vous pensiez au sujet de ces pratiques est en réalité une fausse croyance ...

Je n'ai plus qu'à vous souhaiter la bienvenue dans ce noble monde du développement logiciel

professionnel. Les sessions regroupent entre 3 et 11 personnes, afin de garder une haute qualité

d’interaction.

Prérequis

Bonne maîtrise de Python

Notions du framework FastAPI et du concept d'injection de dépendances

Bonnes connaissances en Programmation orientée objet

Capacité à écrire un simple test unitaire avec Pytest

Public visé

Particuliers et professionnels :

Technical Leader

Développeur Backend

Développeur Full Stack

Architecte Technique

Méthodes pédagogiques

Des apports théoriques sur le processus

Des exemples concrets

Des démonstrations complètes par le formateur en live coding

Exercices réalisés en live par les participants sur une application type entreprise

Challenges proposés quant au TDD, DDD, la Clean Architecture et refactoring de code



Déroulé de la formation

Jour 1

Rapide tour de table, présentation de chacun et exposition des attentes

Introduction et cours théorique sur le TDD, cassant les énormes quiproquos à son sujet

Si le groupe est vraiment novice en TDD, kata éventuel et judicieusement choisi de mises en

pratique avec Python et Pytest

Introduction et cours théorique sur la Clean Architecture

Démarrage d'écriture d'une application "from scratch" digne d'un cas réel d'entreprise en TDD

(User Story avec plusieurs règles de gestion) tout en respectant la Clean Architecture dans le

monde Python.

Approche agile avec le mindset NoEstimates initiée par un mini atelier BDD.

otions DDD principales expliquées (Aggregates, Value Objects, Repositories, Factories (au sens

DDD), Bounded Contexts, Domain Events).

Approche CQRS (séparation lecture et écriture).

Séances de questions/réponses tout au long

Jour 2

Suite du live coding de l'application "from scratch" digne d'un cas réel d'entreprise

Séances de refactoring continu du code ET des tests de l'application, rendues plaisantes et sans

crainte grâce au TDD

Utilisation de Mutation Testing avec Mutmut pour prouver que le code coverage à lui tout seul

est dangereux, et pouvant guider à merveille le refactoring d'un code Legacy.

Clarification de concepts subtils relatifs au TDD et à la Clean Architecture

Liaison à une base de données PostgreSQL avec SQLAlchemy - démonstration de tests

d'intégration

Utilisation de TestContainers pour assurer un environnement de test reproductible

Exposition des services réalisés sous forme d'API REST avec FastAPI et tests end-to-end

Séance de questions/réponses tout au long

WealCome

192 avenue de la Division Leclerc, 95160 Montmorency, France


