@ § WealCome

PROGRAMME DE FORMATION

Expertise en conception logicielle
BDD / TDD / DDD / Clean Architecture

Document généré le 27/01/2026

TDD, DDD et Clean Architecture dans le monde Java

Type d'action : Action de formation Durée totale : 14h

Informations de session

Lieu : Visio par Zoom
Formateur : Michaél AZERHAD

Dates et horaires

Date Début
11/02/2026 09:15
11/02/2026 13:00
12/02/2026 09:15

12/02/2026 13:00

Fin

12:15

17:00

12:15

17:00

Durée

3h

4h

3h

4h



Objectifs de la formation

¢ Identifier les principes fondamentaux du Test-Driven Development (TDD) et de la Clean
Architecture dans un environnement Java.

e Reconnaitre les causes de la complexité accidentelle et adopter des pratiques permettant
de la prévenir.

e Appliquer les concepts principaux du Domain-Driven Design (DDD) et de CQRS dans des cas
pratiques.

e Développer une application from scratch en suivant une méthodologie professionnelle,
comme attendu en entreprise.

e Mettre en oeuvre différents types de tests (unitaires, d'acceptation, end-to-end,
d'intégration) pour garantir la qualité du code.

e Analyser et comparer les différents types de tests pour mieux comprendre leur utilité et
leur complémentarité.

e Clarifier et démontrer les concepts majeurs et connexes a travers des sessions interactives
de questions-réponses.

e Expérimenter des situations concrétes grace a des exercices de live coding.



Description

Les backends comme les frontends souffrent d'une complexité accidentelle dans la plupart des
projets. Une complexité accidentelle est une complexité additionnelle malvenue qui aurait pu étre
évitée. Quand s'observe t'elle réellement ? Quelques mois apreés le début du projet. Pourquoi donc
le terme “accidentelle” et non le terme “additionnelle” ? Car bien souvent, elle survient par
surprise, sans anticipation aucune. Surtout lorsque le développeur n'est pas aguerri sur les
concepts théoriques relatifs a la conception logiciel. Quelles en sont ses conséquences :

e Un temps de développement considérablement augmenté pour la moindre fonctionnalité
normalement simple.

e Une peur extréme de changer le code existant, de peur d'y engendrer des impacts non
percus ni maitrisés.

e Par cette peur de changer/casser, chaque bug remonté est corrigé avec des workarounds ;
autrement dit des pansements indirects proches de la supercherie.

e Une expressivité du code réduite a néant, par a-coups de ces workarounds et du stress
engendré par la soumission face au code existant.

¢ Un code qui devient de moins en moins testable, par des prises de raccourcis contraires aux
bonnes pratiques d'architectures et de code design souvent passées inapergues, sans prise
de conscience.

e Des sessions fatiguantes de débugging a outrance devant ce code jugé farfelu, non
expressif et souvent bancal.

e Une application devenue treés rapidement inflexible, dont méme la moindre évolution
technologique telle une mise a jour de frameworks devient le signe d'un besoin de refonte
globale ...

Est-ce une fatalité ? Devant le nombre de projets dans ce cas-13, il faut croire que oui. Mais il existe
heureusement des pratiques logicielles qui redonnent de I'espoir et qui atténuent drastiquement
cette complexité accidentelle si bien comprises et bien menées. Parmi ces pratiques, je mettrai
lI'accent sur deux d'entre-elles qui me paraissent totalement cruciales et qui ont changé mon
quotidien des 2011 :

e Le Test-Driven Development alias TDD
e La Clean Architecture (cf Hexagonal Architecture ou Ports/Adapters architecture).

Dans cette formation, je vous démontrerai comment réaliser un backend from scratch avec ces
pratiques dans un live coding avancé et fluide, sans manquer de vous exposer une bonne
stratégie de tests combinant tests d'acceptation, tests unitaires, tests d’intégration et tests end-
to-end. Mon premier souhait : que vous compreniez bien que le TDD n’est pas une technique de
test mais de codage permettant une amélioration notable de vos algorithmes et de vos designs.
Le sujet sera un sujet Java digne de ce qu'on attend de nous en entreprise, bien loin d'un vulgaire
Kata de tri de nombres. Technologies :

e Java 25+

Spring-Boot / Rest APIs
Hibernate/JPA
PostgreSQL

JUnit 5/ Assert)
TestContainers (Docker).

Ce sera interactif avec des exercices sur le chemin, des échanges de questions/réponses au tac au
tac, et surtout une bonne ambiance, a la fois pro et détendue. Ayant I'habitude d'enseigner sur les
sujets Craft, j'ai acquis une pédagogie qui vous plaira et qui ne laissera personne sur le carreau.
Aussi, j'assurerai un suivi sous forme de réponses a vos nouvelles questions post-formation de
sorte a ce que chacun d'entre-vous évoluent et progressent sans blocage et dans la bonne



direction au quotidien. Pour finir, vous constaterez pour beaucoup que quasiment tout ce que
vous pensiez au sujet de ces pratiques sont en réalité de fausses croyances ... Je n'ai plus qu'a
vous souhaiter la bienvenue dans ce noble monde du développement logiciel professionnel. Les
sessions regroupent entre 3 et 11 personnes, afin de garder une haute qualité d'intéraction.

Prérequis

e Bonne maitrise de Java ou d'un langage similaire comme C#
¢ Notions aux frameworks, Spring-Boot / Spring-lOC / Hibernate précisément sont un plus
e Bonnes connaissances en programmation orientée objet

Capacité a écrire un simple test unitaire avec JUnit

Public visé

Particuliers et professionnels :

Technical Leader
Développeur Backend
Développeur Full Stack
Architecte technique

Méthodes pédagogiques

e Des apports théoriques sur le processus

e Des exemples concrets

e Des démonstrations complétes par le formateur en live coding

e Exercices réalisés en live par les participants afin de s'exercer sur cette application
d'entreprise.

e Challenges proposés quant au TDD, Clean Archi et au refactoring de code (modification de
structure du code)



Déroulé de la formation

Jour 1

e Rapide tour de table, présentation de chacun et exposition des attentes
¢ Introduction et cours théorique sur le TDD cassant les énormes quiproquos a son sujet

e Sile groupe est vraiment novice en TDD, Kata éventuel et judicieusement choisi de mises en
pratique avec Java et JUnit

¢ Introduction et cours théorique sur la Clean Architecture

e Démarrage d'écriture d'une application "from scratch" digne d'un cas réel d'entreprise en TDD
(User Story avec plusieurs regles de gestion) tout en respectant la Clean Architecture dans le
monde Java

e Approche agile avec le mindset NoEstimates initiée par un mini atelier BDD judicieusement
mené.

e Notion DDD principales expliquées et prises en compte (Aggregates, Value Objects, Bounded
Contexts). Approche CQRS (séparation Read et Write).

e Séances de questions / réponses tout au long

Jour 2

e Suite du live coding de I'application "from scratch" digne d'un cas réel d'entreprise

e Séances de refactoring au fil de I'eau du code ET des tests de I'application exemple, rendues
plaisantes et sans crainte grace au TDD

e Clarification de concepts subtils relatifs au TDD et a la Clean Architecture

e Liaison a une base de données PostgreSQL avec TestContainers - démonstration de tests
d'intégration Concept de persistent model allié a Hibernate/JPA/Spring

e Exposition des services réalisés sous forme d'API REST avec Spring-Boot et tests end-to-end

e Séance de questions / réponses tout au long

WealCome

192 avenue de la Division Leclerc, 95160 Montmorency, France



